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Abstract-An optimization procedure is presented for achieving maximum dissipation from a longi- 
tudinal fin system of trapezoidal profile with mutual irradiation. The fins are conceived to be arranged 
symmetrically around a small base cylinder of uniform temperature. The governing equation for the 
temperature field along the fin is formulated in terms of finite summation and differences. The resulting 
set of simultaneous, non-linear, algebraic equations was solved by iteration using the Newton- 
Raphson method. 

A new dimensionless parameter is proposed to characterize the total dissipating capacity of a fin 
system with mutual irradiation. Its use has advantage over the conventional fin effectiveness in design 
application. 

Trapezoidal fins, including triangular and rectangular profiles, were investigated for a wide range 
of emissivities and incident space radiation. Optimum fin number and their proportions were deter- 
mined and charts of dissipation capacity were presented. This analysis also leads to an expression 
suitable for comparing performance of fin systems fabricated of materials of different conductivity 
and density. For a fixed total mass of the fin material, the maximum dissipation varies as the l/3 power 

of the quantity k/p, other factors remain unaltered. 

NOMENCLATURE 

Any consistent system of units may be used; 
the engineering system is indicated below. N, 

AT, 

B, 

F, 

H, 

k 
L, 
M, 

total profile area of the fin system, 
(NLt,/2)(2 - T), ft2; 
radiosity, radiant energy leaving a sur- 
face per unit time and area, Btu/h fta. 
B* = dimensionless radiosity, B/UT:; 
configuration factor. Ft, = configura- 
tion factor of the ith element with 
respect to the jth element. Fis = con- 
figuration factor of the ith element 
with respect to the imaginary surface S; 
irradiation, incident radiant energy per 
unit time and area, Btu/h ft2. H* = 

@r, 

y7 

S, 

T, 

‘, 
WT, 

fin height; also, the number of non- 
linear, simultaneous equations; 
fin number; 
total rate of dissipation of the fin 
system per unit axial length of the base 
cylinder, Btu/h ft ; 
reflectivity, re = reflectivity with respect 
to stellar radiation; 
imaginary black surface joining the tips 
of two adjoining fins, fP; 
absolute temperature, degR. Te = 
equivalent temperature of S, degR; 
fin thickness, ft; 
total mass of the fin system per unit 
axial length of the base cylinder, lb,/ft. 

dimensionless irradiation, H/UT; 
thermal conductivity, Btu/h ft degR; 

Greek symbols 

fin height, fi; 6, angle between the central planes of two 

total number of sub-divisions along the 
adjacent fins, 277/N rad. Sf= included 
angle between the surfaces of the 
trapezoidal fin, t This paper is based partly on a Ph.D. Thesis by 

Karlekar [l]. 
$ Formerly, Graduate Student. now of Baroda. India. 

t, - tM 
- ____ rad: r 

§ Professor; Department of klechanical Engiheering 
and of Nuclear Engineering University of Illinois, 
Urbana, Illinois. 

dimensionless kssipation parameter, 
QT/(~“7&4#‘“; 
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8. emissivity; 

ril fin system effectiveness, defined by 
equation ( 14) ; 

8, dimensionless temperature, T/7;,: 
h. dimensionless parameter, 

aT,L:‘N(2 7)/k A y : 

P, density, Ibm/ft” ; 

0, Stefan-Boltzmann constant, 
=. 0.1713 ‘I lo--* Btu/h ft2 degR’: 

7, aspect ratio, I ~~ (tnl/t”). 

Subscripts 

i, .i, refer to the ith and jth sub-division ; 
M, refers to fin tip; 
0, refers to fin root; 
opt. optimum values. 

INTRODUCTION 

1~ recent years, interest in fins with radiation 
heat transfer has been stimulated by man’s desire 
of space exploration. Radiation is almost the 
exclusive mechanism by which waste heat from 
power plants or other heat generating equipment 
in spacecrafts can be dissipated. It is obviously 
desirable to minimize the mass of fins used on 
space radiators. A survey of literature reveals 
that considerable amount of study has been 
devoted to the subject during the past 5 years. 
MacKay and Leventhal [2] reported a procedure 
of achieving optimization for a flat plate uni- 
formly heated on one edge. Lieblein [3] presented 
results of rectangular fin efficiencies for various 
ratios of sink to source temperature. Bartas 
and Sellers [4] studied a heal rejecting system 
consisting of parallel tubes joined by web plates 
that served as extended surfaces. A relation was 
established giving the maximum rate of heat 
dissipation for a given weight. The solutions 
were obtained by numerical computation. An 
analytical solution of the same problem was 
given by Chen [5]. Callinan and Berggren [6] 
analysed rectangular fins attached to tubes 
having axial temperature gradient. Tatom [7] 
described a method of obtaining temperature 
distribution along a rod in the presence of solar 
radiation, and Chambers and Somers [8] had 
studied the efficiency of circular fins. Very 
recently, the condition of optimization for a 
rectangular fin taking into account the heat 
transfer at the tube surface was examined by 
Schreiber et al. [9]. 

Wilkins Jr. [IO] and Nilson and Curry [I I]ga\e 
expressions for the optimum proportion of tri- 
angular fins radiating to space at absolute zero. 
Wilkins Jr. [ 121 has also discovered a nobol simi- 
larity transformation which eliminates the non- 
linear differential equation of lhc temperatitr<~ 
field and greatly simplifies the ,olution proced 
ure. The optitnum fin profile could be obtained 
for any arbitrary surface dissipation mechanism. 
tither convective or radiativt: or both. 

In ,111 the papers cited aho\ C. consideralioti 
h% been confined to fins which exchange IICII 
with space but have no radiant interaction with 
adjacent fins. The necessity of considering 
mutual irradiation in fin system optimizalion 
has been pointed out by Eckert. Irvine Jr. and 
Sparrow [ 131. These authors also gave a pcnclrat.. 
ing discussion of some important characteristic5 
of radiating fins and presented a general mathe- 
matical formulalion of the problem. In ;t 
subsequent paper by the same authors 1 141, 
computer results for eEcctivenes>. letnperaturi 
distribution and local heal lots for straight 
rectangular fins were pi-csetrled. They also ga\o 
optimum proportions of the fin \vhen the angle 
between two adjacent fins u’ab independently 
specified. 

Let us consider the conduction- radiation heat 
transfer process in longitudinal tins of trap- 
ezoidal profile, equally spaced around a long 
base cylinder of small diamctcr. For :t fixed 
total mass of the tin system. it i\ conczi\abic 
that the total dissipation may be incrcasod by 
increasing the number of tins. thus pt-oviding 2 
larger area for surface dissipation. On tlte ~>thct 
hand. ;t larger tin numbct- would result ~II (I 
decrease of energy dissipation for ihe individual 
{in not only due to the decrease in cf!‘cc?i:~c 
radiation exchange with space but also due to a 
smaller area available for conduction. l‘hi\ 
suggests that the optimization procedure should 
bc based on the total radiating capacity of 111~ 
Iin system as a whole. and thu% necessitates lhz 
simultaneous determination of fin numb;t- vttci 
its proportion. It is pertinent that for il rcct- 
angular fin system radiating into space at XI-O 
absolute temperature, the said optimization 
condition could be evaluated using the informa- 
tion given in reference [14]. 

Theoretically speaking, thy oplitnizaItott oi- 
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any fin system requires also the determination 
of the cross-section profile. This undoubtedly 
would multiply the complexities of an already 
difficuh problem, at least from the viewpoint of 
computation. For practical applications, this 
seldom has been found necessary since its per- 
formance is not expected to differ significantly 
from that of an optimized trapezoidal system. 
Even if the theoretical profile could be deter- 
mined, fabrication difficulties would probably 
prevent its use. 

ANALYSIS 

Consideration is hereby given to plane, 
radiating fins of trapezoidal cross section 
equally spaced around a base cylinder whose 
radius is small relative to the fin height, L. See 
Fig. 1 (a). It is desired to determine the optimum 
fin number and proportions of such fins. 

lo1 

lobttt2E~ SYSTEM 
ANALYSED 

FIG. 1. Fin system c~~~rati~n. 

Assumptions 
1. The fin material has a uniform conductivity 

and emissivity, both being independent of 
temperature. Its surface behaves like a 
diffuse emitter and reflector. The assump- 
tion of uniform material properties is intro- 

2. 

3. 

4. 

5. 

duced for convenience; the present analysis 
is equally adaptable to variable k and E. 
The fin system is long in the axial direction 
of the base cylinder and heat flow in that 
direction is negligible. 
The individual fins are thin and hence the 
conduction heat flow is one-dimensional. 
The thermal condition at the base cylinder 
is uniform, so is that of the external 
environment. The latter may be interpreted 
that the fin system has a rotation about the 
axis of the cylinder in the presence of 
incident solar radiation. This assumption 
preserves the symmetry of the problem; 
thus greatly simplifies the analysis. 
Radiant interaction between the fin and the 
base cylinder is negligible. This is justifiable 
only when the base cylinder radius is small 
compared to fin height, L. Effects of mutual 
irradiation occurring between a single fin 
and its adjoining base surface have been 
examined by Sparrow and Eckert [15]. In 
conclusion, they remarked, “. . . for non- 
black surfaces, . . . an extensive computing 
effort would be required to achieve 
numerical results. Such an undertaking 
would appear worth while only when 
application to a specific design is being 
considered,” In this paper, we contine our- 
selves to a consideration of an idealized 
system as shown in Fig. 1 (b). 

FINITE DIFFERENCE FORMULATION OF 
GOVERNING EQUATION OF TEMPERATURE 

FIElLD IN THE FIN 

Fig. 2 shows an enlarged view of two adjacent 
fins. Each is sub-divided into M - I elementary 
volumes of equal length Ax, but with half-length 
volumes at the root and at the tip. Under steady 
heat flow condition, application of the principle 
of energy conservation to the ith eIement leads 
to: 

= (Bc ‘- Ha)dx (1) 

fori=1,2,..., M, the quantity A2Ta = Ts+ 
- 2E + TW and ATg = (Tz-I - Tz&/~. In (I), 
the left-hand side represents the net rate at which 
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0 I 2 i-l I i+ I M-l MM+, 

q 1.1,) +q,.t., =L!L AX 

FIG. 2. Scheme of sub-division and energy balance 
for node i. 

heat is flowing into the ith element by con- 
duction; the right-hand side represents the net 
rate at which heat is leaving by radiation. The 
quantity t,[l -- (i/M)71 is the average thickness 
of the trapezoidal fin at the ith node. Due to 
symmetry, only one half of the fin thickness is 
considered. 

The irradiation Hi consists of energies from 
two distinctive sources: (a) due to radiation 
leaving the adjacent fin surface, HiI', and (b) 
due to radiation from space or environment, 
H:?). The latter may be characterized by an 
equivalent radiation from an imaginary black 
surface S of uniform temperature T, which 
connects the tips of the adjacent fins. Using the 
well known reciprocity relation of configuration 
factors for diffuse radiation, one finds, 

M 

Hi" = 2 FijBj, i - 0. 1, . . . , M (2a) 
j z" 
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with 

an d 

i 0. I, , . r , M (3b) 

(3a) and (3b) were formulated from equations 
(31-58) in reference [16] together with the usual 
finite difference approximation. (3a) fails when 
i --= 0 and/or j = 0. However. if one interprets 
F,,, as the configuration factor between two long, 
identical strips of width 4.~12, having a common 
edge and an included angle of 6 + S,f, it can be 
shown that, 

Also, in subsequent numerical computation>. 
f+,,j(with,j-1, 2.... M) would be evaluated 
by setting i = t in (3a). This means that for the 
half-length element at the fin root, the node is 
considered to be located not at the origin 0 but 
at the mid-point of that element. 

For the radiosity, we may write, 

I 0, I.. . . , hf (41 

in which I’~ is the reflectivity of the fin surface 
with respect to space radiation. In general it is 
taken to be different from r, which is the reflec- 
tivity for radiation emanating from the adjoining 
fin. The latter is related to the emissivity by: 
I’ 7_ 1 

Eliminlting HII) from (1) and (4) yields. 

which is valid for i I. ‘2 . . . M. Due to 
symmetry, one may obtain an expression for Bf 
bv simnlv renlacing i by-i in the above equation. H!“’ = aT4F. * * zs> i--O,1 ,..., M (2b) . ~. _ _. _. 
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When these results are substituted into (1) to- 
gether with the relationships (2a) and (2b), 
followed by introducing the dimensionless 
parameters defined by: 

T L r& 
s!?=-, &f=-- &‘ir=Fif+--__ 

To Ax' I - rFoo Fof 

and 

h _ uT;L3(2 - T)N 2acL2 - 
k&p =- kh 

one obtains, after some rearrangement, 

1 --Ye 

(69 

(fW* 

1 

I 
i 

’ (7) 

i 

for i’= 1,2..., M. Here again d20t = 6$-r 
- 24 + 4+1 and A& = (&-I - 4+1)/2. We 
note that the two end conditions are, 8, = 1 and 
cYH+~ = BM+ The former corresponds to the 
uniform root temperature To while the latter 
arises -from the stipulation that heat loss at the 
fin tip is negligible. 

Equation (7) is presented in a form convenient 
for machine computation. It constitutes a set of 
simultaneous non-linear, algebraic equations of 
M unknowns, namely, @,, 8,. . . , t?icl. The solu- 
tion is seen to depend on six parameters Be, E, 
Fe, 7, h and N (or 6, which appears in the 
expression for configuration factors). In many 
design problems the quantities 8e, 6, re and T 
are either given or specified. Thus, the optimiza- 
tion of the fin system reduces to the problem of 

* Parameter X represents the ratio of surface conduct- 
ance due to radiation to the internal conductance. It is 
anaiogous to Biot modulus co~only used in convective 
fm analysis. 

determining h and iV to achieve maximum 
dissipation for a given total mass. 

Alternate formulations of the equation set (7) 
based on the governing integro-differential 
equation for the temperature field along the fin 
and on the electric network analog are separately 
given in Appendix A and B. 

SOLUTION OF S~LT~OUS, EON-~, 
ALGEBRAIC EQUATIONS 

In the literature, extensive information is 
available for solving simultaneous, linear, 
algebraic equations [17]. In contrast, only a 
meagre amount of work has been done when 
the equations are non-linear. The several 
methods of solution [18-211, which the authors 
are aware of, are all iterative in nature, although 
they differ in detail. A principal factor governing 
the selection of solution method for a particular 
category of problem is the rapidity with which a 
satisfactory solution can be obtained. Among 
other factors, this depends on the proximity of 
the initial guess to the exact solution, accuracy 
desired, the order of the interative process and 
the computer time required to generate a new 
set of iterates. It often happens that the last two 
factors counteract each other. 

The Newton-Raphson method of iteration 
has been used throughout the present investiga- 
tion. Earlier, the Gauss-Seidel iterative pro- 
cedure modified for non-linear equations had 
also been examined but was later abandoned due 
to the longer overall computer time required to 
achieve the same degree of accuracy, starting 
with identical initial values of the unknowns. 
The general mathematical procedure of ascertain- 
ing the so-called “close enough” initial guess to 
guarantee convergence is of course difficult, but 
since the physical nature of the present problem 
can be readily apprehended, the task is not as 
hard as it appears. Jndeed, our experience shows 
that so long as the initial B’s are selected positive 
and less than unity, the Newton-Raphson 
method converges for all the cases studied. 
While a detailed discussion of the method is 
beyond the scope of the paper, the success of 
obtaining results of the numerical computation 
actually hinges on the procedure. For this 
reason, a brief account of the Ne~on-Raphso~ 
method is presented in Appendix C. 
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HEAT DISSIPATION CAPACITY OF THE FIN Having thus obtained all the B,*‘s, the M,?‘s can 
SYSTEM be evaluated from the following relation : 

The total heat dissipation capacity of the fin 
system per unit axial length of the base cylinder. 
QT, may be computed from (i) the temperature 
gradient at the fin root, or (ii) net radiation over 
the fin surface. The latter is preferred since the 
t~ncation error associated with the finite 
difference approximation therein is of the second 
order. Hence, 

N-l 

ii* H,“‘* : i ;. f, 3* : 

with 
I 

.,I 
/{!‘I* -:: C I;;@; 

T i 0. I.. . ~, hf. i 12) 

, /’ ! 
ff!‘I* = f;i,Jy” L I, _j 

This completes the necessary relations for the 
calculation of [. 

-i- (BM -- Had] Ax. (st 

Introducing the dimensionless quantities, 

O~rIMIZA~ON PROCEDURE 

Let !+‘r be the total mass of the fin system pet 
unit axial length of the base cylinder, to be 
distributed equally among the N fins. It is a 
given, fixed quantity in our problem. Clearly, 
WZ~ : PAT’. We desire to determine the optimum 
number of fins and their proportion such that 
the heat dissjpation capability is a rnaximur~t. 
To achieve this, the set of non-linear equations 
(7) is solved for different assigned values of ,I 
keeping tl,, E, re, and N unchanged. This ix 
followed immediately by an evaluation of the 
dissipation parameter <. All the < ~~- h curves 
exhibit a maxim~lm. The value of h correspond- 
ing to this maximum [ is designated as ho,,t 
which gives the optimum proportion for the fin 
number chosen. The maximum ,$ obtained in 
this manner is a relative maximum since, fat 
given 0,. c, fC and T, it varies with N. Hence the 
above procedure must be repeated for a11 con- 
ceivable values of N beginning with N : 2. 
The overall best distribution of the fin mass will 
be achieved when E attains an absolute maximum 
for the values of the parameters selected. The 
corresponding optimum fin number is designated 
as Nortr, 

Equation (8) becomes, 

dl--1 

+ 2 22 (Bi” --- H:) -+ (B; .-- Hi)]. ( 10) 
I: 1 

The dimensionless dissipation parameter { as 
defined above does not contain the fin length, 
L, and is thus more suitabte for the present 
optimization study than the seemingly simpler 
quantity QT/cT~L. In (lo), Bf is given by, 

fori=1,2,..., M. It is simply a dimensionless 
version of (5). When all the 06’s are known, 
computation of B,* becomes a straight-forward 
substitution. For B,‘, use is made of (4) written 
for the case i == 0. After recasting in dimension- 
less form and some rearrangement, one gets 

The above procedure is admittedly un- 
sophisticated, but is simple, direct and actually 
practical. This is mainly due to the physical 
nature of the problem that the number of fins 
which could conceivably be arranged around 
the base cylinder is rather limited. 

FIN EFFECTIVENESS 

Following Sparrow, Eckert and Irvine Jr. [ 141, 
we define the effectiveness of the fin system, 71, 
as the ratio of the actual heat loss to that of an 
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ideal system having identical geometry but with 
black surface and infinite thermal conductivity. 
Hence, 

Qr, ideal = 2NLu(T, - Tf> sin [(S + Sf)/2] (13) 

and 

Y--l 

2M(l - 0;) sin [(S + Sf)/2] 

2 - T 

(-1 
113 5 

zzz 

h 2iP3 (1 - 0:) sin [(S + Sf)/2] (14) 

which is also applicable for the individual fin. 
In practice, 6~ < S and may be ignored. 

SELECTION OF FIN MATERIAL 

One of the major concerns in the design of 
spacecraft is the minimization of the weight of 
the heat dissipating equipment. This naturally 
calls upon an examination of the performance of 
the optimum fin systems made of different 
material. To this end, we rearrange the expression 
for 8 as follows: 

Q k l/3 

(a2TStWT)1/3 = j 0 ” (15) 

The dissipation parameter 8 for the optimized 
system &,max,opt is uniquely determined when the 
quantities 8,, E, re and 7 are specified. In design, 
the fin root temperature TO and the amount of 
heat to be dissipated, QT, are usually known. 
Equation (15) thus indicates that a material 
possessing the largest values of k/p would 
provide the least mass. For a specified dissipa- 
tion capacity, the mass of an optimized system 
varies directly with the density and inversely 
with the thermal conductivity of the fin material. 
This finding is formally identical to that for 
convective tins of optimum proportion. 

RESULTS AND DISCUSSION 

As noted earlier, the temperature distribution 
along the fin and the dissipation capacity of the 
system depend upon the parameter X for speci- 
fied values of tJe, E, re, 7 and N. Table 1 lists the 
ranges of the values of these quantities used in 
the present investigation. 

Table 1 

8, 0, 0.25, 0.50 
E 0.50, 0.75, 0.90, 1.00 
rp 0.80 

& 
0, 0.75, 0.99 
2, 3, 4, 5, 6, 7, 8, 9, 10 

The case Be = 0 refers to space environment at 
absolute zero temperature. The other two values 
of Be correspond to an incident black radiation 
of 400 Btu/h ft2 when the fin root temperatures 
are respectively at 2780”R and 1390”R. Since 
the fin system is conceived for dissipation of 
heat, it seems pertinent that relatively high 
values of emissivity need to be considered. The 
value of the reflectivity selected for space radia- 
tion is arbitrary, but it is believed to be re- 
presentative of the one encountered in practice. 
Its effect comes into play only when 8, # 0. 
The three chosen values of the aspect ratio, T, 
incorporate the limiting cases of rectangular and 
almost triangular fin Section. The fin number 
ranges from 2 to 10 which encompasses the 
optimum configurations for the values of Be, 
E, re and 7 listed 

The number of sub-divisions, M, was chosen 
to be sixteen. It gave satisfactory accuracy and 
required moderate machine computation time. 
All calculations were done on the “Illiac”, the 
digital computer at the University of Illinois. 
The iteration process for solving the equation 
set (7) was allowed to continue till the largest 
absolute value of the increment as defined in 
equation (A.7) became equal to or smaller than 
10e5. Lowering this limit to IO-” did not alter 
the computed value of 5 by more than 0.01 per 
cent but increased the machine time by 20 per 
cent. 

Dissipation characteristics 
Curves depicting the variation of 6 with h for 

several values of T, E, Be and N are presented in 
Figs. 3-6*. All curves exhibit a maximum and a 
relatively gradual slope for h > hopt. This is 
particularly true for low surface emissitivities. 

* A complete set of sixteen curves is on deposit in the 
Mechanical Engineering Department, University of 
Illinois. 
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In design application, these curves are useful in 
that they provide for information on the reduc- 
tion in dissipation capacity below the theoretical 
maximum if Nopt and hopt cannot be used due 
to structural or other reasons. 

The case N = 2 corresponds to that without 
mutual irradiation, and hence the associated 
hopt gives also the optimum proportion of the 
individual fin. Reference [4] gave results for 
rectangular fins; while those for triangular fins 
were presented in [lo] and [ll]. The results 
obtained from the present analysis agree within 
O-5 per cent with those reported therein. Other 
cases for which T = 0; 0, = 0; E = O-50, 0.75, 
1.00 and N = 3, 4, 6, 8 have been investigated 
in [14]. The quantity NC used in the latter 
reference corresponds to the parameter h when 
T = 0. The values of hopt found from the present 
analysis agree with those of (N&t, within the 
reading accuracy of Fig. 5 in that reference. 

Incident radiation has only minor effect on 
the heat dissipation capacity of the trapezoidal 
fin system, including the rectangular and tri- 
angular profiles, when 8, = 0.25 or less. Some 
reduction is noticed, however, when Be = O-50 
(see Figs. 5 and 6). This is thought to be due to 
the high value of reflectivity assumed for stellar 
radiation. 

As pointed out earlier, the dissipation para- 
meter f for the optimum system is uniquely 

determined when Be, E, re and T are given. Table 
2 summarizes the values of &max,opt, A& and 
hopt for the ranges of parameters listed in 
Table 1. 

The relative maximum values of 8 are shown 
plotted against the fin number for rectangular 
fins in Fig. 7 and triangular fins in Fig. 8, both 
with Be = 0. It is seen that Nopt tends to increase 
with decreasing emissivity. Fig. 9 summarizes 
the result for E = 0.9 but for several values of 
T and 8,. 

The results of the present analysis demonstrate 
that the use of optimum number of fins could 
result in a substantial improvement of fin per- 
formance over the conventional two-fin system. 
Percentagewise, the improvement is 20.4, 24.2, 
31.6 and 51.6 per cent for the rectangular case 
and 19.2, 23.0. 29.3 and 48.3 per cent for the 
almost triangular fin system. These values are 
for 19~ = 0 and correspond to .E = 1.00, 0.90, 
0.75 and 0.50 respectively. For a fixed emissivity 
of 0.90, the improvement amounts to 24.0 per 
cent when 8, = 0.25 and 21.4 per cent when 
8, = 0.50 for the rectangular fins. The cor- 
responding values for the triangular fins are 
22.3 and 19.9 per cent. The advantage gained 
by optimizing the fin number as well as its 
proportion is, in general, quite impressive for 
low emissivities. For such an optimized system, 
the dissipation capacity always increases with 

Table 2(a). (0, = 0) 
____- _-- ___ __ .__.____ __-._ 

7=0 7 = 0.75 7 = 0.99 
l 

5max,opt N opt A opt bax,oPt N opt x opt 8 rmx,o*t N opt hopt 

0.50 1.2850 8 2.35 - - - 1.4350 7 200 
0.75 1.4690 6 1.58 - - 

1;7 
1.6390 6 1.31 

0.90 1.5620 5 1.28 I.6980 5 1.7563 1.15 
1.00 l-6245 5 1.15 - - - 1.8310 0.95 

___ ___. 

Table 2(b) (c = 090, re = 08) 
.__ 

0. 

0.25 
0.50 

7=0 7 = 0.99 

bmax,opt N opt * Aopt 4kqopt N opt Aopt 

1.5585 5 1.27 1.7525 5 1.13 
1.5040 5 1.25 1.6930 4 1~00 
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Fw. 7. Variation of &,,,, with N. Rectangular profile. 

I r zo.99 

FIG. 8. variation of &W with N. Triangular profile. 

an increase in emissivity and aspect ratio. The 
latter is to be expected since larger values of 7 
result in a better utilization of the fin material. 

~ptin~u~n jn eon~gup~tion 
Variations of the quantity X,,r,t, with fin 

FIG. 9. Variation of Ernbx with N. (Note the relatively 
small influence of space radiation at low values of (I,.). 

number are presented in Figs, 10 and 11. This 
parameter which characterizes the optimum fin 
proportion is seen to increase with a decrease 
in emissivity for a given N. This stems from the 
fact that when the emissivity ic low, both the 
influence of mutual irradiation and the radiation 
exchange with space environment become fess. 
To achieve optimization, a greater surface area 
and hence a longer fin is required to compensate 
for the reduction of radiant flux density. On the 
other hand, although Xol,t increases with N for 
a fixed E. it does not follow that the optimum lin 
is longer when the fin number is greater. This 
becomes apparent when one realizes that A is 
proportional to the product NE3. Fig. II shows 
that incident stellar radiation has very minor 
effect on the A,,,+,, while triangular fins exhibit a 
lower value. 

Fig. 12 compares the computed temperature 
distribution along a triangular fin and two 
rectangular fins with published data. The agree- 
ment is excellent. The data taken from reference 
[I I] are for the optimized, single, triangular ftn, 
which is the same as the two-fin con~guratjoi~ 
considered in this analysis. The data obtained 
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FIGS. 10, 11. Variation of AOpt with N. 

RADIATING TRAPEZOIDAL FINS 43 

the entire range of B,, E, re and T have also been 
calculated and are deposited at the authors 
institution. For optimization studies as well as 
in design application, the use of the parameter 5: 
is more convenient than fin effectiveness. 

Perfo$~~~~~ of optimized fins of several materials 
In order to compare the perfo~ance of 

optimized fin system fabricated of different 
materials, charts relating Q&02~H$)li3 and 
(Wp)l’a are presented in Figs. 15 and 16 for 
aluminum, beryllium, copper and titanium at 
several temperatures. The values of thermal 
conductivity and density of these materials are 
taken from references [22] and [23]. These 
curves are evidentfy straight lines passing 
through origin having slopes equal to &,;nax,opt. 

6, 0 I.00 3 4M) 

FIG. 12. Comparison of computed tem~rature 
distribution with data reported in references [Ill 

and 1141. 

from reference [14] are not for the optimized 
systems. Under optimumconditions, the tempera- 
ture distribution remains essentially unaltered 
over wide ranges of emissivity and incident 
radiation. This is shown in Fig. 13. On the other 
hand, changes in aspect ratio have a definite 
influence. As expected, a triangular fin has a 
steeper slope than the rectangular fin. The short, 
horizontal dotted line drawn through the fin 
tip at x/L = 1 emphasizes zero slope, although 
this may not be evident from the plot. 

Fin efleectiveness 
One representative set of curves for fin effec- 

tiveness is shown in Fig. .14. Other sets covering 

o,60 _ e, 0.99 0.50 0 a coo 
Q 099 050 0 0.98 
8 0991.00 0 4 0.95 

050 t t I 1 , I , , , 
0 0.10 020 0.30 0.40 050 D60 070 OBg 0.90 1.00 

X/L 

FIG. 13. Tem~mture distribution along fins of 
optimized systems. 
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0 , .o 2.0 3.0 4.0 5.‘., 
/i 

FIG. 14. Fin effectiveness. 

Of the four materials, aluminum is the most 
desirable for high fin temperatures which are 
within its allowable operating limit. At 672”R, 
beryllium gives a slightly better performance. 
Quantitative application of these charts should 
be made with some caution, since, in the 
present analysis, possible variations of the 
thermal conductivity along the fin length due to 
temperature changes are not included. 

I r=O I# 

FIG. 15. Comparative performance of optimized fin 
Systems. Rectangular profile. 

FIG. 16. Comparative performance of optimtzcd hn 
systems. Trapezoidal,~il~d triangular prot%e. 

CONCLUDING REMARKS 

This analysis demonstrates the practicability 
and accuracy of using finite diffcronce technique 
to study the optimization of radiation fin 
systems. The Newton-RapI~s~)il iterative pro- 
cedure has been found superior to the modified 
Gauss-Seidel technique in solving the resulting 
non-linear, simultaneous, algebraic equations. 
Within the scope of this investigation. the 
method converges for any reasonable initial trial 
solution consistent with the physical nature of 
the problem. Due to the high ~exibi~ity inherent 
with the finite difference technique, problems 
involving variable properties, non-uniform in- 
cident radiation, exchange with base cylinder. 
etc. may be studied. 
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and the two distinctive sources of irradiation 
are, 

I = 1; B(Y) d&,, (A.3a) 

Ht2)(x) = crTjt;j+ (A.3b) 

Herewith the configuration factors dFzz/ and 
Fz8 are given by : 

xx’ sins (8 + 8,) dx’ 
d& = 2]_+ + X’Z- 2xx cos (6 + Sf)]3’2 (A*4a) -t----- 

L cos (6 + 8,) - x 

(A.4b) 

Elimination of the quantities B(x), H(l)(x) and 
W)(x) from (A.l), (A.2) and (A.3) results in 
the following non-linear integro-differential 
equation for the temperature field along the fin, 

’ - YE CTPF - --- 
E c 28 

- G(x’) - 
1-c d 
=- a 

C 
kt(x’) “g] 
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The appropriate boundary conditions are 
Y”(0) = r,, and (dT/dx)(L) = 0. By replacing 
the derivatives by difference quotients and 
integration by summation in the usual manner, 
one obtains the co~esponding expression in 
finite differences and sums. In order to achieve 
a uniform approximation consistent with the 
use of central difference quotient for the second 
derivative, the quantity (d/dx)[kt(dT/dx)] at 
origin is evaluated from the said finite difference 
expression for i =- 0. Thus, 

Using this, one obtains the finite 
representation for (AS) as follows: 

difference 

Dividing each term of (A.7) by uTf, and intro- 
ducing the dimensionless quantities 0, M, T, h 
and Fz~, one is immediately led to (7). The finite 
difference expressions for the configuration 
factors dF,,* and F& are obviously given by (3a) 
and (3b). 

APPENDIX B 

Fig. 17 illustrates an oquivalcnt r-csistanzc 
network simulating the interplay between the 
geometrical and physical characteristics of the 
radiant exchange at the surface and the coupling 
between radiation and internal conduction along 
the fin. For clarity, only a portion of the network 
is shown. The internal nodes arc designated bq 
i and j, and the surface nodes by i’ andj’. The 
various resistances and node potentials arc ah 
indicated. 

Application of Kirchhol-f’s law to nodes i and 
i’ leads respectively to: 

and 

.lI 

Ni. c‘i Bi 

Ri,i 
& i__ T Bi Bj 0. (B.2) 

:- ‘&, /j/ Ra~,~a 
j II 

When the appropriate resistances are substituted 
into (B.2). one obtains after some rearrangement, 

wherein the summation relation for the con- 
figuration factors have been used. For the zeroth 
node, (B.3) becomes, 

By writing j for i in (B.5). one obtains an es- 
pression for Bj. When these are substituted into 
(B.3), followed by introducing the dimensjonless 
parameters defined in (6), one arrives at (7). 
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FIG. 17. Electrical network analog. 

Ri,af = 
SAX 

c; + 1 - E Ei- EP 

Rif, 1’ = (A.$&*, Rs!,s = (Axh)-1 
Ei = oTp, ~$1 = Bt, E. = uTod, and ES = oTe4 

APPENDIX c 
The ~e~v~~~-~~p~s~n rne~~~d 

Let the set of non-linear equations be re- 
presented by, 

di PI, * * 9 4, - . , eiw> = 0, i,j = 1,2,. . . ) iv. 

(C.1) 

In this method, the values of 0$‘s of the (V + 1)th 
iteration are determined from those of the vth 
cycle according to, 

8gy.s.l = 6; -+ h& v = 0, 1, . . . (C.2) 

where the by’s are the solutions of the set of M 
linear, simultaneous equations prescribed by: 

The symbol a~~l~~~ signifies that the partial 
derivatives are to be evaluated at 0;‘s. 

The Taylor series expansion of the function 
4~ leads to, 

+ terms of the order (e;)3 and higher. (C.4) 

In (C.4), e; stands for (85 - 8;) which is the 
error. From (C.2), we observe 

eY - e;+l z hv 3 j ’ Ka 

Substituting (C.5) into (C.4) and making use of 
(C.3), one obtains, 

which implies that the iteration is a second order 
process. This compares with the first order 
process of the Gauss-Seidel method. 

R&um&-On presente un processus d’optimisation pour obtenir la dissipation maximum a partir dun 
dispositif B ailettes longitudinales, ii profil trapbotdal, rayonnant les unes sur Ies autres, Les ailettes 
sont prevues pour un a~ang~ment sym~trique amour dun petit cylindre a temperature uniforme. 
L’equation du champ de temperature Ie long d’une ailette est fohnul6e en somme et diff&ences flnies. 
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Le systeme resultant d’equations algebriques non-Ii&aims est resolu par iteration a I-aide de la 
methode de Newton-Rdphson. 

On propose un nouveau parametre sans dimensions pour caracteriser la puissance de dissipation 
totale d’un dispositif d’ailettes a rayonnement mutuel. Dans les applications techniques leur utilisation 
est preferable a celle des ailettes conventionnelles les plus efficaces. 

Les ailettes trapezoldales et a profils triangulaires et rectangulaires ont tte ttudiees pour un large 
domaine de coefficients d’emission et de rayonnement incident. Le nombre d’ailettes optimum et leurs 
dimensions ont &tC d&ermines et des diagrdmmes donnant leur puissance de dissipation sont present&. 
Cette etude conduit egalement a une expression permettant de comparer les performances de systtmes 
d’ailettes faites a partir de materiaux de conductivite et de densite differentes. Pour une masse totale 
determinee du materiau constituant les ailettes, la dissipation maximum varie comme (~?/p)r’~, les 

autres facteurs restent inchanges. 

Zusammenfassung-Fiir die maximale Warmeabgabe eines Systems von Langsrippen mit trapcz- 
fiirmigem Querschnitt bei gegenseitiger Zustrahlung wird ein Optimierungsverfahren angegeben. Die 
Rippen sollen symmetrisch an einem kleinen Zylinder von gleichmassiger Temperatur angebracht 
sein. Die fur das Temperaturfeld llngs der Rippe massgebliche Gleichung ist in Form endlicher 
Summen und Differenzen dargestellt. Das resultierende System simultaner, nicht-linearer, alge- 
braischer Gleichungen wurde durch fteration mit Hilfe der Newton-Raphson-Methode gel&t. 

Ein neuer dimensionsloser Parameter wird vorgeschlagen; er charakterisiert die Gesamtwhme- 
abgabe eines Rippensystems mit gegenseitiger Zustrahlung. Seine Verwendung zeigt gegentiber dem 
herkommlichen Rippenwirkungsgrad Vorteile bei der praktischen Gestaltung. 

Fur einen weiten Bereich von Emissionsverhaltnissen und Zustrahlungen aus dem Raum wurden 
Rippen trapezfiirmigen, dreieckigen und rechteckigen Querschnitts untersucht. Die Rippenabmessun- 
gen und deren optimale Anzahl wurden bestimmt und Tabellen fur die Abgabeleistung angegeben. 
Diese Analyse liefert such einen. fur den Vergleich von Rippenmaterialien unterschiedlicher Warme- 
leitfahigkeit und Dichte zweckmassigen Ausdruck. Fur eine vorgegebene Materialmenge andert sich 

die Maximalwarmeabgabe mit (k/p) 1/3 bei konstanten anderen Faktoren. 


