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Abstract—An optimization procedure is presented for achieving maximum dissipation from a longi-
tudinal fin system of trapezoidal profile with mutual irradiation. The fins are conceived to be arranged
symmetrically around a small base cylinder of uniform temperature. The governing equation for the
temperature field along the fin is formulated in terms of finite summation and differences. The resulting
set of simultaneous, non-linear, algebraic equations was solved by iteration using the Newton—
Raphson method.

A new dimensionless parameter is proposed to characterize the total dissipating capacity of a fin
system with mutual irradiation. Its use has advantage over the conventional fin effectiveness in design
application.

Trapezoidal fins, including triangular and rectangular profiles, were investigated for a wide range
of emissivities and incident space radiation. Optimum fin number and their proportions were deter-
mined and charts of dissipation capacity were presented. This analysis also leads to an expression
suitable for comparing performance of fin systems fabricated of materials of different conductivity
and density. For a fixed total mass of the fin material, the maximum dissipation varies as the 1/3 power

of the quantity k/p, other factors remain unaltered.

NOMENCLATURE

Any consistent system of units may be used;

fin height; also, the number of non-
linear, simultaneous equations;

the engineering system is indicated below. N,  fin number;
Ar, total profile area of the fin system Qr, total rate Of. dlS.S ipation of the fin
(NLty/2)(2 — 7), f2; system per unit axial length of the base
B, radiosity, radiant energy leaving a sur- cylmdfer., Btu/h ft; .. .
face per unit time and area, Btu/h ft®. r, reflectivity, re =.reﬂect1v1ty with respect
B* = dimensionless radiosity, B/cT¢ to ste':llar radiation; . .
F, configuration factor. Fy = configura- S, imaginary b.l agk surfacezjmmng the tips
tion factor of the ith element with of tvx{o adjoining fins, ft*;
respect to the jth element. Fis = con- T, absg uice temperature, degR. T_e -
figuration factor of the ith element equivalent temp. crature of S, degR;
with respect to the imaginary surface S; L fin thickness, ft; .
H,  irradiation, incident radiant energy per Wr, tot.al mass of the fin system per unit
unit time and area, Btu/h fi2. H* — axial length of the base cylinder, 1by/ft.
dimensionless irradiation, H/oT?;
o ’ ’ Greek symbols
k, t ;
T ﬁliler}?eliaglhiotr’ltqudlwty, Btu/h ft degR; 8,  angle between the central planes of two
/ 2 . adjacent fins, 2#/N rad. 8; = included
M, t - '
otal number of sub-divisions along the angle between the surfaces of the
t This paper is based partly on a Ph.D. Thesis by trapezoidal fin,
Karlekar [1]. to—tm
} Formerly, Graduate Student, now of Baroda, India. ~ i rad;
§ Professor, Department of Mechanical Engineering . . T
and of Nuclear Engineering University of Ilinois, £, dimensjonless dissipation parameter,
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e, emissivity;
7, fin system effectiveness, defined by
equation (14);
0, dimensionless temperature, T/7,:
A, dimensionless parameter,
oToLAN(2 kAr:

p. density, 1by/ft?;
, Stefan—Boltzmann constant,

== (-1713 ~ 10~® Btu/h ft? degR*:
T, aspect ratio, 1 — (far/ty).

Subscripts
i, j,  refer to the ith and jth sub-division;
M,  refers to fin tip;
o, refers to fin root;
opt, optimum values.
INTRODUCTION

IN recent years, interest in fins with radiation
heat transfer has been stimulated by man’s desire
of space exploration. Radiation is almost the
exclusive mechanism by which waste heat from
power plants or other heat generating equipment
in spacecrafts can be dissipated. It is obviously
desirable to minimize the mass of fins used on
space radiators. A survey of literature reveals
that considerable amount of study has been
devoted to the subject during the past 5 years.
MacKay and Leventhal [2] reported a procedure
of achieving optimization for a flat plate uni-
formly heated on one edge. Lieblein [3] presented
results of rectangular fin efficiencies for various
ratios of sink to source temperature. Bartas
and Sellers [4] studied a heat rejecting system
consisting of parallel tubes joined by web plates
that served as extended surfaces. A relation was
established giving the maximum rate of heat
dissipation for a given weight. The solutions
were obtained by numerical computation. An
analytical solution of the same problem was
given by Chen [5]. Callinan and Berggren [6]
analysed rtectangular fins attached to tubes
having axial temperature gradient. Tatom [7]
described a method of obtaining temperature
distribution along a rod in the presence of solar
radiation, and Chambers and Somers [8] had
studied the efficiency of circular fins. Very
recently, the condition of optimization for a
rectangular fin taking into account the heat
transfer at the tube surface was examined by
Schreiber et al. [9].

Wilkins Jr. [10] and Nilson and Curry [l 1]gave
expressions for the optimum proportion of tri-
angular fins radiating to space at absolute zero.
Wilkins Jr. [12] has also discovered a novel simi-
larity transformation which climinates the non-
linear differential cquation of the temperature
field and greatly simplifies the solution proced-
ure. The optimum fin profile could be obtained
for any arbitrary surface dissipation mechanism.
cither convective or radiative or both.

fn all the papers cited above, consideration
has been confined to fins which exchange heat
with space but have no radiant interaction with
adjacent fins. The necessity of  considering
mutual irradiation in fin system optimization
has been pointed out by Eckert, Irvine Jr. and
Sparrow [13]. These authors also gave a penetrat-
ing discussion of some important characteristics
of radiating fins and presented a general mathe-
matical formulation of the problem. In a
subsequent paper by the samc authors |14},
computer tesults for effectiveness, temperature
distribution and local heat loss for straight
rectangular fins were presented. They also gave
optimum proportions of the fin when the angle
between two adjacent fins was independently
specified.

Let us consider the conduction-radiation heat
transfer process in longitudinal fins of trap-
ezoidal profile, equally spaced around a long
base cylinder of small diameter. For a fixed
total mass of the fin system. it is conceivable
that the total dissipation may be mcreased by
increasing the number of fins, thus providing a
larger arca for surface dissipation. On the other
hand. a larger fin number would result in
decrease of energy dissipation for the individuaal
fin not only due to the decrease in eflective
radiation cxchange with space but also due to a
smaller area available for conduction. This
suggests that the optimization procedure should
be based on the total radiating capacity of the
fin system as a whole, and thus necessitates the
simultaneous determination of fin number and
its proportion. It is pertinent that for a rect-
angular fin system radiating into space at zcro
absolute temperature, the said optimization
condition could be evaluated using the informa-
tion given in reference [14].

Theoretically speaking, the oplimization of
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any fin system requires also the determination
of the cross-section profile. This undoubtedly
would multiply the complexities of an already
difficult problem, at least from the viewpoint of
computation. For practical applications, this
seldom has been found necessary since its per-
formance is not expected to differ significantly
from that of an optimized trapezoidal system.
Even if the theoretical profile could be deter-
mined, fabrication difficulties would probably
prevent its use.

ANALYSIS
Consideration is hereby given to plane,
radiating fins of trapezoidal cross section
equally spaced around a base cylinder whose
radius is small relative to the fin height, L. See
Fig. 1 (a). It is desired to determine the optimum
fin number and proportions of such fins.

{b}

TOEALIZED SYSTEM
ANALYSED

Fic. 1. Fin system configuration.

Assumptions
1. The fin material has a uniform conductivity
and emissivity, both being independent of
temperature. Its surface behaves like a
diffuse emitter and reflector. The assump-
tion of uniform material properties is intro-

duced for convenience ; the present analysis
is equally adaptable to variable k£ and e.

2. The fin system is long in the axial direction
of the base cylinder and heat flow in that
direction is negligible.

3. The individual fins are thin and hence the
conduction heat flow is one-dimensional.

4. The thermal condition at the base cylinder
is uniform, so is that of the external
environment. The latter may be interpreted
that the fin system has a rotation about the
axis of the cylinder in the presence of
incident solar radiation. This assumption
preserves the symmetry of the problem;
thus greatly simplifies the analysis.

5. Radiant interaction between the fin and the
base cylinder is negligible. This is justifiable
only when the base cylinder radius is small
compared to fin height, L. Effects of mutual
irradiation occurring between a single fin
and its adjoining base surface have been
examined by Sparrow and Eckert [15]. In
conclusion, they remarked, ... for non-
black surfaces, . . . an extensive computing
effort would be required to achieve
numerical results. Such an undertaking
would appear worth while only when
application to a specific design is being
considered.” In this paper, we confine our-
selves to a consideration of an idealized
system as shown in Fig. 1 (b).

FINITE DIFFERENCE FORMULATION OF
GOVERNING EQUATION OF TEMPERATURE
FIELD IN THE FIN
- Fig. 2 shows an enlarged view of two adjacent
fins. Each is sub-divided into M — 1 elementary
volumes of equal length 4x, but with half-length
volumes at the root and at the tip. Under steady
heat flow condition, application of the principle
of energy conservation to the ith element leads
to:

kit i T
27% [(1 — M'r) AT + 474 Ti]
=(B;— Hpdx (1)

fori=1, 2,..., M, the quantity 42T; = T;4
— 2Ty + Ty and AT = (Ti-1 — Tya)/2. In 1,
the left-hand side represents the net rate at which
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FI1G. 2. Scheme of sub-division and energy balance
for node /.

heat is flowing into the ith element by con-
duction; the right-hand side represents the net
rate at which heat is leaving by radiation. The
quantity #,[1 — (i/M)~] is the average thickness
of the trapezoidal fin at the ith node. Due to
symmetry, only one half of the fin thickness is
considered.

The irradiation H; consists of energies from
two distinctive sources: (a) due to radiation
leaving the adjacent fin surface, H®, and (b)
due to radiation from space or environment,
H®, The latter may be characterized by an
equivalent radiation from an imaginary black
surface S of uniform temperature 7, which
connects the tips of the adjacent fins. Using the
well known reciprocity relation of configuration
factors for diffuse radiation, one finds,

M

H® = 3 FyB;, i—0,1,....,M (2a)
j=0

H® = oT*F;s,

i=01,...,M (2b)
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with
) ij SIn® (8 -+ dy) S
Fiy - 20 4 j2 - 2jjcos (3 4 dppr 0-0
(3a)

and
E Mcos(d - 8,) - i
is 0 n 2[i2+ Mz ,,2”‘;] COS(8 N‘_'Sf)]rz’

F IV N D M (3b)

(3a) and (3b) were formulated from equations
(31-58) in reference [16] together with the usual
finite difference approximation. (3a) fails when
i == 0and/or j == 0. However, if one interprets
F,e as the configuration factor between two long,
identical strips of width 4x/2, having a common
edge and an included angle of & -} 8¢, it can be
shown that,
oS (S B
Foo o 1 (l soslomon ™ (g
Also, in subsequent numerical computations.
Fos (with j =1, 2..., M) would be evaluated
by setting i = £ in (3a). This means that for the
half-length element at the fin root, the node is
considered to be located not at the origin 0 but
at the mid-point of that element.
For the radiosity, we may write,

Bi = eoT* - rH 4 r HY,
P00, M (4

in which r, is the reflectivity of the fin surface
with respect to space radiation. In general it s
taken to be different from r, which is the reflec-
tivity for radiation emanating from the adjoining
fin. The latter is related to the emissivity by:
=1 e

Eliminating H® from (1) and (4) yields.

Fg — F .

B = oT} + . ~aT*Fis
ro okt [ [ \ g AT (s)
e 2dx) ( M T_) PEm T
which is valid for ¢ — 1.2..., M. Due to

symmetry, one may obtain an expression for B;
by simply replacing i by j in the above equation.
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When these results are substituted into (1) to-
gether with the relationships (2a) and (2b),
followed by introducing the dimensionless
parameters defined by:

T L
0=~ M=
TO’ M

and

| _ oD@ — DN _ 20T
kAT ktn

(6b)*
one obtains, after some rearrangement,

1 —r
A

-t
M2 i

[(1 - HT) A2, + jMAﬁi]

Fio

PN
T 1 — rFyg
= ., rM? i .

j=1

4

Z

(€ + "eFosaf) b (7)

]

for i=1,2..., M. Here again 4%0; = 0;
—20; + 654y and A8 = (0;— — G311)/2. We
note that the two end conditions are, 8, = 1 and
Oar+1 = Opr—4. The former corresponds to the
uniform root temperature 7, while the latter
arises from the stipulation that heat loss at the
fin tip is negligible.

Equation (7) is presented in a form convenient
for machine computation. It constitutes a set of
simultaneous non-linear, algebraic equations of
M unknowns, namely, 6,, 6,. .., 6. The solu-
tion is seen to depend on six parameters 8, e,
re, 7, A and N (or 8, which appears in the
expression for configuration factors). In many
design problems the quantities 8, €, r, and =
are either given or specified. Thus, the optimiza-
tion of the fin system reduces to the problem of

—F
+ %Aoj] + Fjse:}»p,, =0

* Parameter A represents the ratio of surface conduct-
ance due to radiation to the internal conductance. It is
analogous to Biot modulus commonly used in convective
fin analysis.

determining A and N to achieve maximum
dissipation for a given total mass.

Alternate formulations of the equation set (7)
based on the governing integro-differential
equation for the temperature field along the fin
and on the electric network analog are separately
given in Appendix A and B.

SOLUTION OF SIMULTANEOUS, NON-LINEAR,
ALGEBRAIC EQUATIONS

In the literature, extensive information is
available for solving simultaneous, linear,
algebraic equations [17]. In contrast, only a
meagre amount of work has been done when
the equations are non-linear. The several
methods of solution [18-21], which the authors
are aware of, are all iterative in nature, although
they differ in detail. A principal factor governing
the selection of solution method for a particular
category of problem is the rapidity with which a
satisfactory solution can be obtained. Among
other factors, this depends on the proximity of
the initial guess to the exact solution, accuracy
desired, the order of the interative process and
the computer time required to generate a new
set of iterates. It often happens that the last two
factors counteract each other.

The Newton-Raphson method of iteration
has been used throughout the present investiga-
tion. Earlier, the Gauss-Seidel iterative pro-
cedure modified for non-linear equations had
also been examined but was later abandoned due
to the longer overall computer time required to
achieve the same degree of accuracy, starting
with identical initial values of the unknowns.
The general mathematical procedure of ascertain-
ing the so-called “close enough” initial guess to
guarantee convergence is of course difficult, but
since the physical nature of the present problem
can be readily apprehended, the task is not as
hard as it appears. Indeed, our experience shows
that so long as the initial ’s are selected positive
and less than wunity, the Newton-Raphson
method converges for all the cases studied.
While a detailed discussion of the method is
beyond the scope of the paper, the success of
obtaining results of the numerical computation
actually hinges on the procedure. For this
reason, a brief account of the Newton—Raphson
method is presented in Appendix C.
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HEAT DISSIPATION CAPACITY
SYSTEM

The total heat dissipation capacity of the fin
system per unit axial length of the base cylinder,
QOr, may be computed from (i) the temperature
gradient at the fin root, or (ii) net radiation over
the fin surface. The latter is preferred since the
truncation error associated with the finite
difference approximation therein is of the second
order. Hence,

OF THE FIN

Qr=NI(By— Hy+2 X (B — Hp)

+ By — Ha)ldx. (8)
Introducing the dimensionless quantities,
* Bi o 11[ IS
O
£ @ Ty )
Equation (8) becomes,
A us N .
sszjwd (B 1))
M1 % * Sy * * .
+ 2 Zx (Bi o Hi.) + (Ba; """ HM)}' (10)

The dimensionless dissipation parameter & as
defined above does not contain the fin length,
L, and is thus more suitable for the present
optimization study than the seemingly simpler
quantity Qr/oTiL. In (10), B} is given by,

Fe = F
B} = 01 4 -5 Fysf)!

rM? i T

fori =1,2,..., M. Itissimply a dimensionless
version of (5). When all the 6;’s are known,
computation of B} becomes a straight-forward
substitution. For B}, use is made of (4) written
for the case / == 0. After recasting in dimension-
less form and some rearrangement, one gets

. 1
BO :—i~~ r‘ﬁ;;(GT' Z F()] '{‘ reF0894) (llb)

Having thus obtained all the B’s, the H s can
be evaluated from the following relation:

HY - HO - He"

i

with l
. N I EEER { R CJM. (1)

H = Y FyB] *

pooa ;

HE" = Fis? J

This completes the necessary relations for the
calculation of ¢.

OPTIMIZATION PROCEDURE

Let Wi be the total mass of the fin system per
unit axial length of the base cylinder, to be
distributed equally among the N fins, It is a
given, fixed quantity in our problem. Clearly,
Wy = pAp. We desire to determine the optimum
number of fins and their proportion such that
the heat dissipation capability is a maximum.
To achieve this, the set of non-linear equations
(7) is solved for different assigned values of A
keeping 0., €, re, and N unchanged. This is
followed immediately by an evaluation of the
dissipation parameter & All the € — A curves
exhibit a maximum. The value of A correspond-
ing to this maximum ¢ is designated as Aopr
which gives the optimum proportion for the fin
number chosen. The maximum ¢ obtained in
this manner is a relative maximum since, for
given #,, €, re and T, it varies with N. Hence the
above procedure must be repeated for all con-
ceivable values of N beginning with N == 2.
The overall best distribution of the fin mass will
be achieved when ¢ attains an absolute maximum
for the values of the parameters selected. The
corresponding optimum fin number is designated
as Nopg.

The above procedure is admittedly un-
sophisticated, but is simple, direct and actually
practical. This is mainly due to the physical
nature of the problem that the number of fins
which could conceivably be arranged around
the base c¢ylinder is rather limited.

FIN EFFECTIVENESS
Following Sparrow, Eckert and Irvine Jr. [14],
we define the effectiveness of the fin system, v,
as the ratio of the actual heat loss to that of an
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ideal system having identical geometry but with
black surface and infinite thermal conductivity.
Hence,

Or,ideal = 2NLo(T} — T# sin [(8 + §7)/2] (13)
and
(B — H) + 25 (B — H}) + (By — Hj)
= 2M(1 — 62)sin [(§ + 87)/2]

2 7\ ¢
- ( ) ) 2N23 (1 = 6% sin [(5 + 8,)/2] (14)

which is also applicable for the individual fin.
In practice, 85 <€ 6 and may be ignored.

SELECTION OF FIN MATERIAL

One of the major concerns in the design of
spacecraft is the minimization of the weight of
the heat dissipating equipment. This naturally
calls upon an examination of the performance of
the optimum fin systems made of different
material. To this end, we rearrange the expression
for £ as follows:

0 K\ 173
wrms = (i) ¢

The dissipation parameter ¢ for the optimized
system &max,opt 1S Uniquely determined when the
quantities f,, ¢, re and 7 are specified. In design,
the fin root temperature 7, and the amount of
heat to be dissipated, Qr, are usually known.
Equation (15) thus indicates that a material
possessing the largest values of k/p would
provide the least mass. For a specified dissipa-
tion capacity, the mass of an optimized system
varies directly with the density and inversely
with the thermal conductivity of the fin material.
This finding is formally identical to that for
convective fins of optimum proportion.

(13)

RESULTS AND DISCUSSION
As noted earlier, the temperature distribution
along the fin and the dissipation capacity of the
system depend upon the parameter A for speci-
fied values of 0., ¢, r,, 7 and N. Table 1 lists the
ranges of the values of these quantities used in
the present investigation.

Table 1

0. 0, 0-25, 0-50

0:50, 0-75, 0-90, 1-00
0-80

0, 0-75, 0-99
2,3,4,56,7,8,9,10

zr s

The case 8, = 0 refers to space environment at
absolute zero temperature. The other two values
of 8, correspond to an incident black radiation
of 400 Btu/h ft? when the fin root temperatures
are respectively at 2780°R and 1390°R. Since
the fin system is conceived for dissipation of
heat, it seems pertinent that relatively high
values of emissivity need to be considered. The
value of the reflectivity selected for space radia-
tion is arbitrary, but it is believed to be re-
presentative of the one encountered in practice.
Its effect comes into play only when 8, # 0.
The three chosen values of the aspect ratio, r,
incorporate the limiting cases of rectangular and
almost triangular fin section. The fin number
ranges from 2 to 10 which encompasses the
optimum configurations for the values of 8,
¢, re and 7 listed

The number of sub-divisions, M, was chosen
to be sixteen. It gave satisfactory accuracy and
required moderate machine computation time.
All calculations were done on the “Illiac”, the
digital computer at the University of Illinois.
The iteration process for solving the equation
set (7) was allowed to continue till the largest
absolute value of the increment as defined in
equation (A.7) became equal to or smaller than
10-5. Lowering this limit to 10-% did not alter
the computed value of ¢ by more than 0-01 per
cent but increased the machine time by 20 per
cent.

Dissipation characteristics

Curves depicting the variation of £ with A for
several values of 7, ¢, 6, and N are presented in
Figs. 3-6*. All curves exhibit a maximum and a
relatively gradual slope for A > Aopt. This is
particularly true for low surface emissitivities.

* A complete set of sixteen curves is on deposit in the
Mechanical Engineering Department, University of
Hlinois.
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In design application, these curves are useful in
that they provide for information on the reduc-
tion in dissipation capacity below the theoretical
maximum if Nopt and Aopt cannot be used due
to structural or other reasons.

The case N = 2 corresponds to that without
mutual irradiation, and hence the associated
Aopt gives also the optimum proportion of the
individual fin. Reference [4] gave results for
rectangular fins; while those for triangular fins
were presented in [10] and [11]. The results
obtained from the present analysis agree within
0-5 per cent with those reported therein. Other
cases for which r =0; 6, = 0; ¢ = 0-50, 0-75,
100 and N = 3, 4, 6, 8 have been investigated
in [14]. The quantity N, used in the latter
reference corresponds to the parameter A when
7 == 0. The values of Aept found from the present
analysis agree with those of (N)opt, within the
reading accuracy of Fig. 5 in that reference.

Incident radiation has only minor effect on
the heat dissipation capacity of the trapezoidal
fin system, including the rectangular and tri-
angular profiles, when 8, = 0-25 or less. Some
reduction is noticed, however, when 6, = 0-50
(see Figs. 5 and 6). This is thought to be due to
the high value of reflectivity assumed for stellar
radiation.

As pointed out earlier, the dissipation para-
meter ¢ for the optimum system is uniquely

determined when 0., ¢, r, and r are given. Table
2 summarizes the values of €max,opts Nopt and
Aopt for the ranges of parameters listed in
Table 1.

The relative maximum values of £ are shown
plotted against the fin number for rectangular
fins in Fig. 7 and triangular fins in Fig. 8, both
with 8, = 0. It is seen that Nyt tends to increase
with decreasing emissivity. Fig. 9 summarizes
the result for € = 0-9 but for several values of
T and b,.

The results of the present analysis demonstrate
that the use of optimum number of fins could
result in a substantial improvement of fin per-
formance over the conventional two-fin system.
Percentagewise, the improvement is 20-4, 24-2,
31+6 and 51-6 per cent for the rectangular case
and 19-2, 23-0, 29-3 and 48-3 per cent for the
almost triangular fin system. These values are
for 8, = 0 and correspond to ¢ = 1-00, 0-90,
0-75 and 0-50 respectively. For a fixed emissivity
of 0-90, the improvement amounts to 24-0 per
cent when 8, = 0-25 and 21-4 per cent when
8, = 0-50 for the rectangular fins. The cor-
responding values for the triangular fins are
22:3 and 19-9 per cent. The advantage gained
by optimizing the fin number as well as its
proportion is, in general, quite impressive for
low emissivities: For such an optimized system,
the dissipation capacity always increases with

Table 2(a). (6. = 0)

T = =075 7 = 099
€
fmax,opt Nopt /\opt frﬂ&x,opt Nopt /\opt fmax,opt Nopt /\opt
0-50 1-2850 8 2:35 —_ — — 1-4350 7 2:00
0-75 1-4690 6 1-58 — — — 1:6390 6 1-31
090 1-5620 5 1-28 1-6980 5 117 1-7563 5 1-15
1-00 1-6245 5 1-15 — — 1-8310 4 095
Table 2(b) (e = 0-90, r, = 0-8)
7=0 r =099
05
fmsx,upt Nopz » /\opt fmnx,opt Nopt /\opt
025 1-5585 5 1-27 1-7525 5 1-13
0-50 1-5040 5 1-25 1-6930 4 1-00
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an increase in emissivity and aspect ratio. The
latter is to be expected since larger values of =
result in a better utilization of the fin material.

Optimum fin configuration
Variations of the quantity Aep: with fin
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FiaG. 9. Variation of émax with N. (Note the relatively
small influence of space radiation at low values of #.).

number are presented in Figs. 10 and 11. This
parameter which characterizes the optimum fin
proportion is seen to increase with a decrease
in emissivity for a given N. This stems from the
fact that when the emissivity is low, both the
influence of mutual irradiation and the radiation
exchange with space environment become less.
To achieve optimization, a greater surface area
and hence a longer fin is required to compensate
for the reduction of radiant flux density. On the
other hand, although Aoyt increases with N for
a fixed e, it does not follow that the optimum fin
is longer when the fin number is greater. This
becomes apparent when one realizes that A is
proportional to the product NL?, Fig. 11 shows
that incident stellar radiation has very minor
effect on the Agpt, while triangular fins exhibit a
fower value.

Temperature distribution

Fig. 12 compares the computed temperature
distribution along a triangular fin and two
rectangular fins with published data. The agree-
ment is excellent. The data taken from reference
[11] are for the optimized, single, triangular fin,
which is the same as the two-fin configuration
considered in this analysis. The data obtained
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Fics. 10, 11. Variation of Agp¢ with N.

from reference [14] are not for the optimized
systems. Under optimum conditions, the tempera-
ture distribution remains essentially unaltered
over wide ranges of emissivity and incident
radiation. This is shown in Fig, 13. On the other
hand, changes in aspect ratio have a definite
influence. As expected, a triangular fin has a
steeper slope than the rectangular fin. The short,
horizontal dotted line drawn through the fin
tip at x/L = 1 emphasizes zero slope, although
this may not be evident from the plot.

Fin effectiveness
One representative set of curves for fin effec-
tiveness is shown in Fig. 14. Other sets covering

the entire range of 6,, ¢, ro and 7 have also been
calculated and are deposited at the authors
institution. For optimization studies as well as
in design application, the use of the parameter £
is more convenient than fin effectiveness.

Performance of optimized fins of several materials

In order to compare the performance of
optimized fin system fabricated of different
materials, charts relating Qr/(c*T2Wr)'® and
(k/p)“/® are presented in Figs. 15 and 16 for
aluminum, beryllium, copper and titanium at
several temperatures. The values of thermal
conductivity and density of these materials are
taken from references {22] and [23]. These
curves are cvidently straight lines passing
through origin having slopes equal t0 £max,opt.
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Fic. 12. Comparison of computed temperature
distribution with data reported in references [11]
and [14].
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Fic. 13. Temperature distribution along fins of
optimized systems.
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Fri. 14. Fin effectiveness.

Of the four materials, aluminum is the most
desirable for high fin temperatures which are
within its allowable operating limit. At 672°R,
beryllium gives a slightly better performance.
Quantitative application of these charts should
be made with some caution, since, in the
present analysis, possible variations of the
thermal conductivity along the fin length due to
temperature changes are not included.
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CONCLUDING REMARKS

This analysis demonstrates the practicability
and accuracy of using finite difference technique
to study the optimization of radiation fin
systems. The Newton-Raphson iterative pro-
cedure has been found superior to the modified
Gauss—Seidel technique in solving the resulting
non-linear, simultaneous, algebraic equations.
Within the scope of this investigation, the
method converges for any reasonable initial trial
solution consistent with the physical nature of
the problem. Due to the high flexibility inherent
with the finite difference technique, problems
involving variable properties, non-uniform in-
cident radiation, exchange with base cylinder.
etc, may be studied.
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APPENDIX A

FEinite difference formulation from the integro-
differential equation
Application of the law of energy conservation
to a differential element of length dx of the
trapezoidal fin shown in Fig. 2 leads to:

d
Eid}'c [k t‘g‘) TQSC)} = B(x) — HO(x) — H®(x)

(A.1)

where #(x) is the fin thickness at a section distant
x from 0, Tts radiosity is,

B(x) = eaT¥x) + rHOX) + r H®(x) (A2)

and the two distinctive sources of irradiation
are,

HO(x) = [ B(x") dFzy
HO(x) = oT*Fys.

(A.32)
(A.3b)

Herewith the configuration factors dFy,: and
FEy¢ are given by:
xx'sin® (8 -+ 87y dx’
2[x?% 4 x"2— 2xx’ cos (8 + &,)]%
L Leos(8+ 85 —x
27 2Ix*+ L2 —2xLcos (8 + S
(A.4b)
Elimination of the quantities B(x), H®(x) and
H®(x) from (A.1), (A.2) and (A.3) results in

the following non-linear integro-differential
equation for the temperature field along the fin,

1 d kth
~ 3 dx 'a;c)
e d

N RETPIELR

(1 —
e(izrd orT;*Fx's} dFee =0, (A5)

dex' =

(A.4a)

Fos =

s LT_E G'Tf Lios
€

d7(x")
Tdx

oT?

-+
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The appropriate boundary conditions are
T(0) =T, and (dT/dx)(L) =0. By replacing
the derivatives by difference quotients and
integration by summation in the usual manner,
one obtains the corresponding expression in
finite differences and sums. In order to achieve
a uniform approximation consistent with the
use of central difference quotient for the second
derivative, the quantity (4/4dx)[ke(4T/4x)] at
origin is evaluated from the said finite difference
expression for i == 0. Thus,

2e¢ dx Ax ”’Fou‘l{‘( - Foo)o T
’1 P
- [Fﬂo -+ ( o e)(; FN’)J FosoT?
%\ p L(A.6)
i e 4 ¢ T])
S 4 . . B
4; lOTJ 2¢ dx (k Ay
I :
- l e i.e") b
-+ € (e B F}SUT;‘J}F‘W.

Using this, one obtains the finite difference
representation for (A.5) as follows:

1 —re . 71 A( ATZ)

Fio
1 - I‘F()‘n(€n7—‘“ { }FFUSUTF)
[ | 4§ AT,
€ i
‘‘‘‘‘ > [OT} . A.X—_(kjm) L(ALT)

(1 -
i € ( ’i)F;aGT4]

€
.. . i"l’;(} )
(1‘13. T | - IFQQ Fﬂ]) '''' = 0.

Dividing each term of (A.7) by ¢T3 and intro-
ducing the dimensionless quantities 8, M, 7, A
and Fy;, one is immediately led to (7). The finite
difference expressions for the configuration
factors d Fyyr and Fyg are obviously given by (3a)
and (3b).

APPENDIX B
Derivation of equation (7) from the electric net-
work analog

Fig. 17 illustrates an equivalent resistance
network simulating the interplay between the
geometrical and physical characteristics of the
radiant exchange at the surface and the coupling
between radiation and internal conduction along
the fin. For clarity, only a portion of the network
is shown. The internal nodes are designated by
i and j, and the surface nodes by i* and j'. The
various resistances and node potentials are as
indicated.

Application of Kirchhoff's law to nodes i and
i’ leads respectively to:

£ - Ky B Epa | B By
Riin Ri i Ry (8.1)
and
N
B; E; Bi - Eg T B, - B;
T N , Q. )
R ' Res 2, Ry (8.2)

g

When the appropriate resistances are substituted
into {B.2), one obtains after some rearrangement,

By = ek -1 24 FiB;

Gt

reFisEs (B-3v)
wherein the summation relation for the con-
figuration factors have been used. For the zeroth
node, (B.3) becomes,

|

B
0
N ’Foo

(GE)* rY I‘())B] + reFosky).

jon

(B.4)
{n a similar manner, we obtain from (B.1)}

r kty
Bi= B 5oy
: M‘ ) 2B B

(El, — EJY, ] 1 TRE. (BS)

2M
By writing j for i in (B.5). one obtains an ex-
pression for B;. When these are substituted into
(B.3), followed by introducing the dimensionless
parameters defined in (6), one arrives at {7).
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APPENDIX C
The Newton-Raphson method
Let the set of non-linear equations be re-
presented by,

¢i(01’-'70f9-'30M)=09 i,j“:—-l,2,...,M.
(C.1)
In this method, the values of 8;’s of the (v -+ 1)th
iteration are determined from those of the »th
cycle according to,
=g+ h, v=01,... (C2
where the /&’s are the solutions of the set of M
linear, simultaneous equations prescribed by:

od;

a6;

M
0., 0. 0N+ DR 0. (C.3)
=1
The symbol 8¢:/08; signifies that the partial
derivatives are to be evaluated at 6)’s.
The Taylor series expansion of the function
¢; leads to,

$i(By, - s 0m)
=¢i(6§a"96;&*"0;1)+

=1

-+ terms of the order (¢2)® and higher. (C.4)

In (C.4), ¢ stands for (6, — &) which is the
error. From (C.2), we observe

I PR
Mo ofy
2%,
1

Y

v ovt+l . Ly
e — estl = hy.

(C.5)

Substituting (C.5) into (C.4) and making use of
(C.3), one obtains,

M M
N LS 62 g+ =0
D e (D ) #r =

j=1 F=1
which implies that the iteration is a second order

process. This compares with the first order
process of the Gauss-Seidel method.

ev+l 6‘95;‘
i o0

Résumé—On présente un processus d’optimisation pour obtenir la dissipation maximum & partir d’un
dispositif a ailettes longitudinales, & profil trapézoidal, rayonnant les unes sur les autres, Les ailettes
sont prévues pour un arrangement symétrique autour d’un petit cylindre & température uniforme.
L’équation du champ de température le long d’une ailette est fofmulée en somme et différences finies.
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Le systéme résultant d’équations algébriques non-linéaires est résolu par itération a [aide de la
méthode de Newton-Raphson.

On propose un nouveau paramétre sans dimensions pour caractériser la puissance de dissipation
totale d’un dispositif d’ailettes & rayonnement mutuel. Dans les applications techniques leur utilisation
est préférable a celle des ailettes conventionnelles les plus efficaces.

Les ailettes trapézoidales et a profils triangulaires et rectangulaires ont été étudiées pour un large
domaine de coefficients d’émission et de rayonnement incident. Le nombre d’ailettes optimum et leurs
dimensions ont été déterminés et des diagrammes donnant leur puissance de dissipation sont présentés.
Cette ¢tude conduit également a une expression permettant de comparer les performances de systémes
d"ailettes faites a partir de matériaux de conductivité et de densité différentes. Pour une masse totale
déterminée du matériau constituant les ailettes, la dissipation maximum varie comme (k/p)V/3, les

autres facteurs restent inchangés.

Zusammenfassung—Fiir die maximale Wirmeabgabe eines Systems von Lidngsrippen mit trapez-
formigem Querschnitt bei gegenseitiger Zustrahlung wird ein Optimierungsverfahren angegeben. Die
Rippen sollen symmetrisch an einem kleinen Zylinder von gleichmissiger Temperatur angebracht
sein. Die fir das Temperaturfeld lings der Rippe massgebliche Gleichung ist in Form endlicher
Summen und Differenzen dargestelit. Das resultierende System simultaner, nicht-linearer, alge-
braischer Gleichungen wurde durch Iteration mit Hilfe der Newton-Raphson-Methode gelost.

Ein neuer dimensionsloser Parameter wird vorgeschlagen; er charakterisiert die Gesamtwirme-
abgabe eines Rippensystems mit gegenseitiger Zustrahlung. Seine Verwendung zeigt gegeniiber dem
herkdmmlichen Rippenwirkungsgrad Vorteile bei der praktischen Gestaltung.

Fiir einen weiten Bereich von Emissionsverhéltnissen und Zustrahlungen aus dem Raum wurden
Rippen trapezformigen, dreieckigen und rechteckigen Querschnitts untersucht. Die Rippenabmessun-
gen und deren optimale Anzahl wurden bestimmt und Tabellen fiir die Abgabeleistung angegeben.
Diese Analyse liefert auch einen, fiir den Vergleich von Rippenmaterialien unterschiedlicher Warme-
leitfahigkeit und Dichte zweckmissigen Ausdruck. Fiir eine vorgegebene Materialmenge dndert sich

die Maximalwirmeabgabe mit (k/p)"? bei konstanten anderen Faktoren.

AHHOTAII—B CTATbHE PACCMATPUBAKTCH METOAbL JOCTHHECHMA MARCHMAJLHON TeIIOOTia L
¢ TIOMOIIBIO CHCTEMBI 1IPOAOJLHEIX pefep TPameliueBIHOro IPOQUIA TPU B3AUMHOR Hp-
paguanun. KOHCTPYKTUBHOE PEIeHNe 3aKI0UALTCS B CHMMETPHYHOM DAacHosI0Aeanu pedep
BOKPYT PABHOMEPHO HATPETOL'O IDUIMHIPA ¢ MaIbIM OCHOBAIMEM. Y DAaBHEHME TeMiteparyp-
HOIO 1T0JIA BIONb pefep cHOpMYIMpPOBAHO B BU KOHEUHLIX CYMM M KOUEYHLIX DasHocTei.
B pesyuabraTe MOJyvYeHA CHCTEMa COBMECTHLIX HellMHefHBIX anredpaniecrHx ypaBHEHwuit,
penleHHLX  MetomoM MTepanuii  Hblortona-Padeouwa. [Lin XaparTtepueTuk  Ter0oTiavn
cHeTeMBl pefep ¢ B3aWMITBIM OOIIyUeHHeM 1pelIoHed HOBHI Oespasmepubiit napaverp. Ou
goee yaoben st pacdera, uem 00BYHO npumensieMast vderTunnoctn pebep.
TpanenonfanbHbie pedpa, BRIOUAA pedpa TPEYrOdsHOTO W MPAMOYTONBHOTO Hpodu.as,
UCCIE0BANBL 1B HIMPOKOM UATABOHE WBIIYYATe bHBIX CHOCOGHOCTEH U Ccaydaiupix I11po-
CTPAHCTBEHHbIX pajanuit. Onpegesenbl ODTHMAILIOC HMHCAO pelep W COOTHOUWEeHHA X
paswepon. IlpegcraBienni vpaduisu udTeHCMBHOCTH TelmootmMena. B pesyubrare takoro
ANAJIUAA 1TOAYIeII0 BHPAKEHHe [l CPABHeHNA pelep, H3TOTORICHHLIX U2 MATEPHAIOB pas-
smdHodt TewTonporoginocty u nuotnoctn. [Tpu mocrodnHoit ofmefi Macce Matepuasa MaKcu-
MAJILHOC PACCOSTINE TOTLLA 3aBMCUT TOTLKO OT Reanduubr kfp.



